Download AWS DevOps Engineer - Professional.DOP-C01.Dump4Sure.2024-12-26.298q.vcex

Vendor: Amazon
Exam Code: DOP-C01
Exam Name: AWS DevOps Engineer - Professional
Date: Dec 26, 2024
File Size: 990 KB
Downloads: 1

How to open VCEX files?

Files with VCEX extension can be opened by ProfExam Simulator.

Demo Questions

Question 1
To run an application, a DevOps Engineer launches an Amazon EC2 instances with public IP addresses in a public subnet. A user data script obtains the application artifacts and installs them on the instances upon launch. A change to the security classification of the application now requires the instances to run with no access to the Internet. While the instances launch successfully and show as healthy, the application does not seem to be installed. 
Which of the following should successfully install the application while complying with the new rule? 
 
  1. Launch the instances in a public subnet with Elastic IP addresses attached. Once the application is installed and running, run a script to disassociate the Elastic IP addresses afterwards. 
  2. Set up a NAT gateway. Deploy the EC2 instances to a private subnet. Update the private subnet's route table to use the NAT gateway as the default route. 
  3. Publish the application artifacts to an Amazon S3 bucket and create a VPC endpoint for S3. Assign an IAM instance profile to the EC2 instances so they can read the application artifacts from the S3 bucket. 
  4. Create a security group for the application instances and whitelist only outbound traffic to the artifact repository. Remove the security group rule once the install is complete.  
Correct answer: C
Explanation:
https://aws.amazon.com/pt/blogs/aws/new-vpc-endpoint-for-amazon-s3/  
https://aws.amazon.com/pt/blogs/aws/new-vpc-endpoint-for-amazon-s3/ 
 
Question 2
An IT department manages a portfolio with Windows and Linux (Amazon and Red Hat Enterprise Linux) servers both on-premises and on AWS. An audit reveals that there is no process for updating OS and core application patches, and that the servers have inconsistent patch levels. 
Which of the following provides the MOST reliable and consistent mechanism for updating and maintaining all servers at the recent OS and core application patch levels? 
 
  1. Install AWS Systems Manager agent on all on-premises and AWS servers. Create Systems Manager Resource Groups. Use Systems Manager Patch Manager with a preconfigured patch baseline to run scheduled patch updates during maintenance windows. 
  2. Install the AWS OpsWorks agent on all on-premises and AWS servers. Create an OpsWorks stack with separate layers for each operating system, and get a recipe from the Chef supermarket to run the patch commands for each layer during maintenance windows. 
  3. Use a shell script to install the latest OS patches on the Linux servers using yum and schedule it to run automatically using cron. Use Windows Update to automatically patch Windows servers. 
  4. Use AWS Systems Manager Parameter Store to securely store credentials for each Linux and Windows server. Create Systems Manager Resource Groups. Use the Systems Manager Run Command to remotely deploy patch updates using the credentials in Systems Manager Parameter Store  
Correct answer: A
Explanation:
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-patch-patchgroups.html  
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-patch-patchgroups.html 
 
Question 3
A company is setting up a centralized logging solution on AWS and has several requirements. The company wants its Amazon CloudWatch Logs and VPC Flow logs to come from different sub accounts and to be delivered to a single auditing account. However, the number of sub accounts keeps changing. The company also needs to index the logs in the auditing account to gather actionable insight. 
How should a DevOps Engineer implement the solution to meet all of the company’s requirements? 
  1. Use AWS Lambda to write logs to Amazon ES in the auditing account. Create an Amazon CloudWatch subscription filter and use Amazon Kinesis Data Streams in the sub accounts to stream the logs to the Lambda function deployed in the auditing account. 
  2. Use Amazon Kinesis Streams to write logs to Amazon ES in the auditing account. Create a CloudWatch subscription filter and use Kinesis Data Streams in the sub accounts to stream the logs to the Kinesis stream in the auditing account. 
  3. Use Amazon Kinesis Firehose with Kinesis Data Streams to write logs to Amazon ES in the auditing account. Create a CloudWatch subscription filter and stream logs from sub accounts to the Kinesis stream in the auditing account. 
  4. Use AWS Lambda to write logs to Amazon ES in the auditing account. Create a CloudWatch subscription filter and use Lambda in the sub accounts to stream the logs to the Lambda function deployed in the auditing account.  
Correct answer: C
Explanation:
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-aws-integrations.html  
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-aws-integrations.html 
 
Question 4
A production account has a requirement that any Amazon EC2 instance that has been logged into manually must be terminated within 24 hours. All applications in the production account are using Auto Scaling groups with Amazon CloudWatch Logs agent configured. 
How can this process be automated? 
 
  1. Create a CloudWatch Logs subscription to an AWS Step Functions application. Configure the function to add a tag to the EC2 instance that produced the login event and mark the instance to be decommissioned. Then create a CloudWatch Events rule to trigger a second AWS Lambda function once a day that will terminate all instances with this tag. 
  2. Create a CloudWatch alarm that will trigger on the login event. Send the notification to an Amazon SNS topic that the Operations team is subscribed to, and have them terminate the EC2 instance within 24 hours. 
  3. Create a CloudWatch alarm that will trigger on the login event. Configure the alarm to send to an Amazon SQS queue. Use a group of worker instances to process messages from the queue, which then schedules the Amazon CloudWatch Events rule to trigger. 
  4. Create a CloudWatch Logs subscription in an AWS Lambda function. Configure the function to add a tag to the EC2 instance that produced the login event and mark the instance to be decommissioned. Create a CloudWatch Events rule to trigger a daily Lambda function that terminates all instances with this tag.  
Correct answer: D
Question 5
A DevOps Engineer is implementing a mechanism for canary testing an application on AWS. The application was recently modified and went through security, unit, and functional testing. The application needs to be deployed on an AutoScaling group and must use a Classic Load Balancer. 
Which design meets the requirement for canary testing? 
 
  1. Create a different Classic Load Balancer and Auto Scaling group for blue/green environments. Use Amazon Route 53 and create weighted A records on Classic Load Balancer. 
  2. Create a single Classic Load Balancer and an Auto Scaling group for blue/green environments. Use Amazon Route 53 and create A records for Classic Load Balancer IPs. Adjust traffic using A records. 
  3. Create a single Classic Load Balancer and an Auto Scaling group for blue/green environments. Create an Amazon CloudFront distribution with the Classic Load Balancer as the origin. Adjust traffic using CloudFront. 
  4. Create a different Classic Load Balancer and Auto Scaling group for blue/green environments. Create an Amazon API Gateway with a separate stage for the Classic Load Balancer. Adjust traffic by giving weights to this stage.  
Correct answer: A
Explanation:
https://aws.amazon.com/route53/faqs/  
https://aws.amazon.com/route53/faqs/ 
 
Question 6
An online retail company based in the United States plans to expand its operations to Europe and Asia in the next six months. Its product currently runs on Amazon EC2 instances behind an Application Load Balancer. 
The instances run in an Amazon EC2 Auto Scaling group across multiple Availability Zones. All data is stored in an Amazon Aurora database instance. 
When the product is deployed in multiple regions, the company wants a single product catalog across all regions, but for compliance purposes, its customer information and purchases must be kept in each region. 
How should the company meet these requirements with the LEAST amount of application changes? 
 
  1. Use Amazon Redshift for the product catalog and Amazon DynamoDB tables for the customer information and purchases. 
  2. Use Amazon DynamoDB global tables for the product catalog and regional tables for the customer information and purchases 
  3. Use Aurora with read replicas for the product catalog and additional local Aurora instances in each region for the customer information and purchases. 
  4. Use Aurora for the product catalog and Amazon DynamoDB global tables for the customer information and purchases.  
Correct answer: C
Question 7
A company has a hybrid architecture solution in which some legacy systems remain on-premises, while a specific cluster of servers is moved to AWS. The company cannot reconfigure the legacy systems, so the cluster nodes must have a fixed hostname and local IP address for each server that is part of the cluster. The DevOps Engineer must automate the configuration for a six-node cluster with high availability across three Availability Zones (AZs), placing two elastic network interfaces in a specific subnet for each AZ. Each node's hostname and local IP address should remain the same between reboots or instance failures. 
Which solution involves the LEAST amount of effort to automate this task? 
 
  1. Create an AWS Elastic Beanstalk application and a specific environment for each server of the cluster. For each environment, give the hostname, elastic network interface, and AZ as input parameters. Use the local health agent to name the instance and attach a specific elastic network interface based on the current environment. 
  2. Create a reusable AWS CloudFormation template to manage an Amazon EC2 Auto Scaling group with a minimum size of 1 and a maximum size of 1. Give the hostname, elastic network interface, and AZ as stack parameters. Use those parameters to set up an EC2 instance with EC2 Auto Scaling and a user data script to attach to the specific elastic network interface. Use CloudFormation nested stacks to nest the template six times for a total of six nodes needed for the cluster, and deploy using the master template. 
  3. Create an Amazon DynamoDB table with the list of hostnames, subnets, and elastic network interfaces to be used. Create a single AWS CloudFormation template to manage an Auto Scaling group with a minimum size of 6 and a maximum size of 6. Create a programmatic solution that is installed in each instance that will lock/release the assignment of each hostname and local IP address, depending on the subnet in which a new instance will be launched. 
  4. Create a reusable AWS CLI script to launch each instance individually, which will name the instance, place it in a specific AZ, and attach a specific elastic network interface. Monitor the instances, and in the event of failure, replace the missing instance manually by running the script again.  
Correct answer: B
Explanation:
https://aws.amazon.com/pt/blogs/devops/use-nested-stacks-to-create-reusable-templates-and-support-role-specialization/  
https://aws.amazon.com/pt/blogs/devops/use-nested-stacks-to-create-reusable-templates-and-support-role-specialization/ 
 
Question 8
A financial institution provides security-hardened AMIs of Red Hat Enterprise Linux 7.4 and Windows Server 2016 for its application teams to use in deployments. A DevOps Engineer needs to implement an automated daily check of each AMI to monitor for the latest CVE. 
How should the Engineer implement these checks using Amazon Inspector? 
 
  1. Install the Amazon Inspector agent in each AMI. Configure AWS Step Functions to launch an Amazon EC2 instance for each operating system from the hardened AMI, and tag the instance with SecurityCheck: True. Once EC2 instances have booted up, Step Functions will trigger an Amazon Inspector assessment for all instances with the tag SecurityCheck: True. Implement a scheduled Amazon CloudWatch Events rule that triggers Step Functions once each day. 
  2. Tag each AMI with SecurityCheck: True. Configure AWS Step Functions to first compose an Amazon Inspector assessment template for all AMIs that have the tag SecurityCheck: True and second to make a call to the Amazon Inspector API action StartAssessmentRun. Implement a scheduled Amazon CloudWatch Events rule that triggers Step Functions once each day. 
  3. Tag each AMI with SecurityCheck: True. Implement a scheduled Amazon Inspector assessment to run once each day for all AMIs with the tag SecurityCheck: True. Amazon Inspector should automatically launch an Amazon EC2 instance for each AMI and perform a security assessment. 
  4. Tag each instance with SecurityCheck: True. Implement a scheduled Amazon Inspector assessment to run once each day for all instances with the tag SecurityCheck: True. Amazon Inspector should automatically perform an in-place security assessment for each AMI.  
Correct answer: A
Question 9
A Development team uses AWS CodeCommit for source code control. Developers apply their changes to various feature branches and create pull requests to move those changes to the master branch when they are ready for production. A direct push to the master branch should not be allowed. The team applied the AWS managed policy AWSCodeCommitPowerUser to the Developers’ IAM Rote, but now members are able to push to the master branch directly on every repository in the AWS account. 
What actions should be taken to restrict this? 
 
  1. Create an additional policy to include a deny rule for the codecommit:GitPush action, and include a restriction for the specific repositories in the resource statement with a condition for the master reference. 
  2. Remove the IAM policy and add an AWSCodeCommitReadOnly policy. Add an allow rule for the codecommit:GitPush action for the specific repositories in the resource statement with a condition for the master reference. 
  3. Modify the IAM policy and include a deny rule for the codecommit:GitPush action for the specific repositories in the resource statement with a condition for the master reference. 
  4. Create an additional policy to include an allow rule for the codecommit:GitPush action and include a restriction for the specific repositories in the resource statement with a condition for the feature branches reference.  
Correct answer: A
Explanation:
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-conditional-branch.html  
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-conditional-branch.html 
 
Question 10
A Developer is designing a continuous deployment workflow for a new Development team to facilitate the process for source code promotion in AWS. Developers would like to store and promote code for deployment from development to production while maintaining the ability to roll back that deployment if it fails.  
Which design will incur the LEAST amount of downtime? 
 
  1. Create one repository in AWS CodeCommit. Create a development branch to hold merged changes. Use AWS CodeBuild to build and test the code stored in the development branch triggered on a new commit. Merge to the master and deploy to production by using AWS CodeDeploy for a blue/green deployment. 
  2. Create one repository for each Developer in AWS CodeCommit and another repository to hold the production code. Use AWS CodeBuild to merge development and production repositories, and deploy to production by using AWS CodeDeploy for a blue/green deployment. 
  3. Create one repository for development code in AWS CodeCommit and another repository to hold the production code. Use AWS CodeBuild to merge development and production repositories, and deploy to production by using AWS CodeDeploy for a blue/green deployment. 
  4. Create a shared Amazon S3 bucket for the Development team to store their code. Set up an Amazon CloudWatch Events rule to trigger an AWS Lambda function that deploys the code to production by using AWS CodeDeploy for a blue/green deployment.  
Correct answer: A
HOW TO OPEN VCE FILES

Use VCE Exam Simulator to open VCE files
Avanaset

HOW TO OPEN VCEX AND EXAM FILES

Use ProfExam Simulator to open VCEX and EXAM files
ProfExam Screen

ProfExam
ProfExam at a 20% markdown

You have the opportunity to purchase ProfExam at a 20% reduced price

Get Now!